Instance-Specific Parameter Tuning for Meta-Heuristics
نویسندگان
چکیده
Meta-heuristics are of significant interest to decision-makers due to the capability of finding good solutions for complex problems within a reasonable amount of computational time. These methods are further known to perform according to how their algorithm-specific parameters are set. As most practitioners aim for an off-the-shelf approach when using meta-heuristics, they require an easy applicable strategy to calibrate its parameters and use it. This chapter addresses the so-called Parameter Setting Problem (PSP) and presents new developments for the Instance-specific Parameter Tuning Strategy (IPTS). The IPTS presented only requires the end user to specify its preference regarding the trade-off between running time and solution quality by setting one parameter p (0 ≤ p ≤1), and automatically returns a good set of algorithm-specific parameter values for each individual instance based on the calculation of a set of problem instance characteristics. The IPTS does not require any modification of the particular meta-heuristic being used. It aims to combine advantages of the Parameter Tuning Strategy (PTS) and the Parameter Control Strategy (PCS), the two major approaches to the PSP. The chapter outlines the advantages of an IPTS and shows in more detail two ways in which an IPTS can be designed. The first design approach requires expert-based knowledge of the meta-heuristic’s performance in relation to the problem at hand. The second, automated approach does not require explicit knowledge of the metaheuristic used. Both designs use a fuzzy logic system to obtain parameter values. Results are presented for an IPTS designed to solve instances of the Travelling Salesman Problem (TSP) with the meta-heuristic Guided Local Search (GLS). Jana Ries University of Portsmouth, UK Patrick Beullens University of Southampton, UK Yang Wang Beijing University of Technology, China
منابع مشابه
Effective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons
Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...
متن کاملInstance-Based Parameter Tuning via Search Trajectory Similarity Clustering
This paper is concerned with automated tuning of parameters in local-search based meta-heuristics. Several generic approaches have been introduced in the literature that returns a ”one-size-fits-all” parameter configuration for all instances. This is unsatisfactory since different instances may require the algorithm to use very different parameter configurations in order to find good solutions....
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملOptimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016